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We shall prove the following.

THEOREM. If P is a polynomial of degree n with n distinct zeros in [-1, 1]
and

I P(cos(k7r/n) I = 1, k = 0, 1,... , n, (1)

then either P(x) = Tn(x) or P(x) = -Tn(x), where Tn(x) = cos(n arc cos x)
is the Chebyshev polynomial ofdegree n.

This theorem answers affirmatively a problem posed by C. Micchelli and
T. Rivlin at the conference on "Linear Operators and Approximation" held
in Oberwolfach in the summer of 1971, (see [1, p. 498]).

For the proof, we will use a lemma due to W. W. Rogosinski [2].
Throughout, we assume that P is a polynomial of degree n with n distinct
zeros in [-1, 1], satisfying (1).

LEMMA 1. (Rogosinski [2]). If P(x) = a(x - Xl) ... (X - x n), then
Ia I ~ 2n - l .

ProofofTheorem. We wish to show that if P(x) = a(x - Xl) ... (X - x n),
then, Ia I > 2n-\ or P = ±Tn • This coupled with Lemma 1 proves the
theorem. We expand P in terms of Chebyshev polynomials as

n

P(x) = I A"T,,(x).
o

Since the coefficient of x n in Tn is 2n-\ we have An2n- 1 = a. Now,

n n

P(cos ()) = I A" cos k() = 1/2 I Ak(eik8 + e-i"8).
o 0
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This leads us to consider the polynomial

n

R(z) = t zn I: Aizk + Z-k).
o

419

At each 2nth root of unity eik1r /n, I R(eik1T /n)I = 1, k = 1,... , 2n. Also, R has
all its zeros on the unit circle, namely at the points Zl , ••. , Z2n, where Zk is
that point on the unit circle with Re(zk) = Xk and Im(zk) > 0, k = n
and Zk+n = Zk , k = 1,..., n. Hence,

The polynomial z2n - 1, vanishes at each of the 2nth roots of unity and so

Z2n - 1 = (z - ei1T /n) .•. (z _ ei2n1T/n).

This gives

2n
1 = n I R(eik1T /n)[

k~l

[A I 2n 2n(f) .n [eik1Tln - Zj I
J.k=l

The last inequality is strict unless each term z;n - 1 is equal to -2. One
checks easily that this would imply that either P = Tn or P = - Tn . Thus,
if P 01= ±Tn , then (2) shows that

I < [ An [ = 2-n+1 [ a [,

as desired.

Remark. Our original proof did not use Lemma 1. This lemma was
kindly pointed out to us by Michelli and Rivlin and this considerably
simplified our original proof.
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