# A Property of Chebyshev Polynomials 

Ronald A. DeVore*<br>Department of Mathematics, Oakland University, Rochester, Michigan 48063

Communicated by T. J. Rivlin

We shall prove the following.
Theorem. If $P$ is a polynomial of degree $n$ with $n$ distinct zeros in $[-1,1]$ and

$$
\begin{equation*}
\mid P(\cos (k \pi / n) \mid=1, \quad k=0,1, \ldots, n, \tag{1}
\end{equation*}
$$

then either $P(x)=T_{n}(x)$ or $P(x)=-T_{n}(x)$, where $T_{n}(x)=\cos (n \operatorname{arc} \cos x)$ is the Chebyshev polynomial of degree $n$.

This theorem answers affirmatively a problem posed by C. Micchelli and T. Rivlin at the conference on "Linear Operators and Approximation" held in Oberwolfach in the summer of 1971, (see [1, p. 498]).

For the proof, we will use a lemma due to W. W. Rogosinski [2]. Throughout, we assume that $P$ is a polynomial of degree $n$ with $n$ distinct zeros in $[-1,1]$, satisfying (1).

Lemma 1. (Rogosinski [2]). If $\quad P(x)=a\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$, then $|a| \leqslant 2^{n-1}$.

Proof of Theorem. We wish to show that if $P(x)=a\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$, then, $|a|>2^{n-1}$, or $P= \pm T_{n}$. This coupled with Lemma 1 proves the theorem. We expand $P$ in terms of Chebyshev polynomials as

$$
P(x)=\sum_{\mathbf{0}}^{n} \lambda_{k} T_{k_{k}}(x) .
$$

Since the coefficient of $x^{n}$ in $T_{n}$ is $2^{n-1}$, we have $\lambda_{n} 2^{n-1}=a$. Now,

$$
P(\cos \theta)=\sum_{0}^{n} \lambda_{k} \cos k \theta=1 / 2 \sum_{0}^{n} \lambda_{k}\left(e^{i k \theta}+e^{-i k \theta}\right) .
$$

[^0]This leads us to consider the polynomial

$$
R(z)=\frac{1}{2} z^{n} \sum_{0}^{n} \lambda_{k}\left(z^{k}+z^{-k}\right) .
$$

At each $2 n$th root of unity $e^{i k \pi / n},\left|R\left(e^{i k \pi / n}\right)\right|=1, k=1, \ldots, 2 n$. Also, $R$ has all its zeros on the unit circle, namely at the points $z_{1}, \ldots, z_{2 n}$, where $z_{k}$ is that point on the unit circle with $\operatorname{Re}\left(z_{k}\right)=x_{k}$ and $\operatorname{Im}\left(z_{k}\right)>0, k=1, \ldots, n$ and $z_{k+n}=\bar{z}_{k}, k=1, \ldots, n$. Hence,

$$
R(z)=\frac{1}{2} \lambda_{n}\left(z-z_{1}\right) \cdots\left(z-z_{2 n}\right) .
$$

The polynomial $z^{2 n}-1$, vanishes at each of the $2 n$th roots of unity and so

$$
z^{2 n}-1=\left(z-e^{i \pi / n}\right) \cdots\left(z-e^{i 2 n \pi / n}\right) .
$$

This gives

$$
\begin{align*}
1=\prod_{k=1}^{2 n}\left|R\left(e^{i k \pi / n}\right)\right| & =\left(\frac{\lambda_{n}}{2}\right)^{2 n} \prod_{j, k=1}^{2 n}\left|e^{i k \pi / n}-z_{j}\right| \\
& =\left(\frac{\left|\lambda_{n}\right|}{2}\right)^{2 n} \prod_{j=1}^{2 n}\left|z_{j}^{2 n}-1\right| \leqslant\left|\lambda_{n}\right|^{2 n} \tag{2}
\end{align*}
$$

The last inequality is strict unless each term $z_{j}^{2 n}-1$ is equal to -2 . One checks easily that this would imply that either $P=T_{n}$ or $P=-T_{n}$. Thus, if $P \neq \pm T_{n}$, then (2) shows that

$$
1<\left|\lambda_{n}\right|=2^{-n+1}|a|,
$$

as desired.
Remark. Our original proof did not use Lemma 1. This lemma was kindly pointed out to us by Michelli and Rivlin and this considerably simplified our original proof.

## References

1. Linear Operators and Approximation, Proceedings of the conference held in Oberwolfach, ISNM, 20, Birkhäuser, Basel, 1972.
2. W. W. Rogosinski, Some elementary inequalities for polynomials, Math. Gaz. 39 (1955), 7-12.

[^0]:    * The author gratefully acknowledges NSF support; grant GP 19620.

